Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sens Diagn ; 1(4): 719-730, 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1972679

ABSTRACT

Graphene field-effect transistor (GFET) biosensors exhibit high sensitivity due to a large surface-to-volume ratio and the high sensitivity of the Fermi level to the presence of charged biomolecules near the surface. For most reported GFET biosensors, bulky external reference electrodes are used which prevent their full-scale chip integration and contribute to higher costs per test. In this study, GFET arrays with on-chip integrated liquid electrodes were employed for COVID-19 detection and functionalized with either antibody or aptamer to selectively bind the spike proteins of SARS-CoV-2. In the case of the aptamer-functionalized GFET (aptasensor, Apt-GFET), the limit-of-detection (LOD) achieved was about 103 particles per mL for virus-like particles (VLPs) in clinical transport medium, outperforming the Ab-GFET biosensor counterpart. In addition, the aptasensor achieved a LOD of 160 aM for COVID-19 neutralizing antibodies in serum. The sensors were found to be highly selective, fast (sample-to-result within minutes), and stable (low device-to-device signal variation; relative standard deviations below 0.5%). A home-built portable readout electronic unit was employed for simultaneous real-time measurements of 12 GFETs per chip. Our successful demonstration of a portable GFET biosensing platform has high potential for infectious disease detection and other health-care applications.

2.
Sensors & diagnostics ; 1(4):719-730, 2022.
Article in English | EuropePMC | ID: covidwho-1971015

ABSTRACT

Graphene field-effect transistor (GFET) biosensors exhibit high sensitivity due to a large surface-to-volume ratio and the high sensitivity of the Fermi level to the presence of charged biomolecules near the surface. For most reported GFET biosensors, bulky external reference electrodes are used which prevent their full-scale chip integration and contribute to higher costs per test. In this study, GFET arrays with on-chip integrated liquid electrodes were employed for COVID-19 detection and functionalized with either antibody or aptamer to selectively bind the spike proteins of SARS-CoV-2. In the case of the aptamer-functionalized GFET (aptasensor, Apt-GFET), the limit-of-detection (LOD) achieved was about 103 particles per mL for virus-like particles (VLPs) in clinical transport medium, outperforming the Ab-GFET biosensor counterpart. In addition, the aptasensor achieved a LOD of 160 aM for COVID-19 neutralizing antibodies in serum. The sensors were found to be highly selective, fast (sample-to-result within minutes), and stable (low device-to-device signal variation;relative standard deviations below 0.5%). A home-built portable readout electronic unit was employed for simultaneous real-time measurements of 12 GFETs per chip. Our successful demonstration of a portable GFET biosensing platform has high potential for infectious disease detection and other health-care applications. On-chip integrated graphene field-effect transistor (GFET)-based aptasensor was developed with portable readouts for sensitive and specific virus detection.

3.
Biosens Bioelectron ; 170: 112673, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-807919

ABSTRACT

Currently the world is being challenged by a public health emergency caused by the coronavirus pandemic (COVID-19). Extensive efforts in testing for coronavirus infection, combined with isolating infected cases and quarantining those in contact, have proven successful in bringing the epidemic under control. Rapid and facile screening of this disease is in high demand. This review summarises recent advances in strategies reported by international researchers and engineers concerning how to tackle COVID-19 via rapid testing, mainly through nucleic acid- and antibody- testing. The roles of biosensors as powerful analytical tools are emphasized for the detection of viral RNAs, surface antigens, whole viral particles, antibodies and other potential biomarkers in human specimen. We critically review in depth newly developed biosensing methods especially for in-field and point-of-care detection of SARS-CoV-2. Additionally, this review describes possible future strategies for virus rapid detection. It helps researchers working on novel sensor technologies to tailor their technologies in a way to address the challenge for effective detection of COVID-19.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Animals , Biosensing Techniques/economics , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/economics , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/methods , Coronavirus Infections/economics , Equipment Design , Humans , Pandemics , Point-of-Care Testing/economics , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL